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Abstract. The relationships between two distributions having the same

solutions for problems of optimal spacing selection for the asymptotically

best linear unbiased estimator of a location or scale parameter or for

problems of optimal stratification for estimation of a population mean

are investigated. Easily checked necessary and sufficient conditions

under which two distributions have identical solutions to these problems

are given in terms of their quantile and density-quantile functions. As

an application of these results a quantile domain analog of a theorem

due to Adatia and Chan (1981, Scand. Actuar. J., 193-202) on the equi-

valence of optimal grouping, spacing and stratification problems is

obtained.
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1. Introduction. For a particular absolutely continuous distribution

F, assumed to depend on a location or scale parameter 0, the insightful

work of Adatia and Chan (1981) has focused on the equivalence of problems

of i) optimal grouping for maximum likelihood estimation of 8, ii) optimal

quantile (optimal spacing) selection for the asymptotically best linear

unbiased estimator (ABLUE) of 6 and iii) optimal stratification for estima-

tion of a population mean. In this paper the more general question of

when different distributions have equivalent solutions for these problems

is considered from a quantile domain perspective. We focus, initially, on

the latter two problems which can be stated as follows:

Problem 1. Select percentile points Ou 0 < u1 <.< Uk+l-l, (frequently
called a spacing) corresponding to sample quantiles which maximize the

asymptotic relative Fisher efficiency of the ABLUE for 6 (cf. Sarhan and

Greenberg (1962, Chap. 5)).

Problem 2. Given strata boundaries a -x0 <x1 <...< xk+lb (where a

and b are possibly infinite values which bound the support of F), a

stratified random sample of size n is to be selected using proportional

allocation, i.e., the "number" of sample elements taken from (xil ,xi] is

n[F(xi)-F(xi 1 )]. If e is the mean for F, the usual estimator of 8 is
j k+1 [F(x ).F(x ) ]X where iis the sample mean from the ith stratum.

The problem is to select the boundaries to minimize the variance of 8

(cf. Dalenius (1950)). Observe that when F is a normal distribution

8 is a location parameter whereas for the exponential distribution

8 corresponds to a scale parameter.

Both Problems 1 and 2 are nonlinear in nature so that, as a rule, their

solutions must be tabulated numerically. However, in some instances it has

been possible to exploit relationships between different types of distri-
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butions to obtain, for example, optimal spacings for one distribution

in terms of those for another which have already been computed

(cf. Kulldorff (1973)). When applicable, this approach can save con-

siderable time, effort and expense. The question that arises, of course,

is when and under what conditions can such tactics be expected to work or

fail. Thus, we would like easily checked conditions regarding the equi-

valence (or non-equivalence) of optimal spacing or stratification problems

for different distribution types. Motivated by such considerations we

will study the relationship between two distributions having the same

solutions for either of Problems 1 or 2. Our major results in this regard

(Theorems 1-3) are stated and discussed in the next section. It will be

seen that necessary and sufficient conditions for the solutions of any of

these problems to coincide for two distributions can be succinctly sum-

marized in terms of relationships between their quantile and density-quantile

functions. Proofs are given in Section 3 with Section 4 devoted to the

application of results in Section 2 to the optimal grouping problem.

2. Optimal Spacing and Stratification. Let F (x;e I) and F2 (x;e 2)

be two strictly monotone, continuously differentiable, distribution functions

(d.f.'s) which depend on parameters 81 and e2 of either the location or

scale variety. The standardized forms of these d.f.'s, corresponding

to ei -0 or l(i-1,2) contingent on whether 8 is a location or scale para-

i ±
meter, will be denoted as 1 and H2, respectively, with their associated

continuous densities written as h and h . Thus, for example, F (x;e) can be

expressed as Hi1 (x-.1), if e1 is a location parameter, or Hx1), if el
is a scale parameter. Also, define the standardized quantile functions

(q.f.'s) and density-guantile functions (d.q.f.'s)
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Q(u) H1 (u) - inf{x : Hx) > u} , 0 < u <1, i1,2, (1)

and

di(u) hi(Q u)) , 0 < u < I , i-1,2 . (2)

Our principal result regarding two distributions having the same optimal

spacings is provided by the following theorem.

Theorem 1. Let gi, 1-1,2, denote either di or the product of di And Q ,,

di-Qi, depending on whether 8, is a location or scale parameter. Assume

that g, is either concave or convex, vanishes at 0 and 1 and is twice

continuously differentiable on (0,1) with (g')2 and Ig"I; 2/3 integrable.

Under these assumptions F, and F2 will have the same optimal spacings for

the estimation of 81 and 8 for all k if and only if there exists constants

a,4 (0) such that

g'(u) ' + Bg (u) , u e (0,1). (3)

To exemplify the use of Theorem 1 consider the Weibull distribution

F(X;I) - l-exp{-(x/l , xv > 0,

for which H (x) - l-exp{-xV}, QI(u) - {-ln(l-u)}I/v and

1-1/v
d1(u) - v(l-u)[-ln(l-u) l  . Since 81 is a scale parameter we use

g1 (u) - d1(u)Ql(u) - -v(l-u)ln(l-u). A special case of the Weibull is

the exponential distribution which corresponds to v -1. The optimal spacings

for the exponential have been tabulated and may be found, for instance, in

Sarhan, Greenberg and Ogawa (1963). Taking g(u) -- (l-u)ln(l-u) it follows

from (3) that these spacings are also optimal for the Weibull when v#l.

This relationship has also been noted by Kulldorff (1973). Other results

obtained by Kulldorff (1973) also follow similarly from Theorem 1.
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As another example consider the logistic distribution with

FI(x;81 ) - [l+exp{-Ir(x- 1 )//3 ] - < x <

so that Hi(x) - [1 +exp{-wx/3] -1, Ql(u) - ln(u/l-u) and

9 1 (u) - d1 (u) - /l3u(l--). By choosing g2(u) - O'-l(u), where 0 and

are the standard normal distribution and density function, respectively,

it is seen that the optimal spacings for location parameter estimation

for the logistic and normal distributions cannot be identical for all k.

If instead we choose F2 (x;6 2) 1-(l+x/e2)V, x, v > O, it follows that

the optimal spacings for location parameter estimation for the logistic

are the same as those for scale parameter estimation in the Pareto distri-

bution if and only if v-1.

Two distributions will be said to have the same optimal solutions
- k+l

for Problem 2if, for any set of optimal strata boundaries {x i ik0 for F.,il i-O 1
k+l

there is a corresponding set {x i2 0 of optimal boundaries for F2 whichi2i-

satisfies

Fl(xil;e1) - F2 (xi2;e2) , iO,...,k+l. (4)

Such a definition is natural since it considers equivalence in terms of

percentage points that are not influenced by departures in the values

of xil and xi2 due merely to factors of location or scale. The next

theorem has the consequence that a distribution is essentially determined

by its optimal strata boundaries.

Theorem 2. If, for i1-,2, Qi s square integrable and Q1 -1/di is monotone

and continuous on (0,1) with di2 /3 integrable, then F1 and F2 have the same

solutio fJ= rgbl 2 W _Lth sense of (4)) foraJ. k if and only if there

gaZxI cons tants a, B (00O) jL.gh.=
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Ql (u) a + B Q2 (u) , u C (0,) (5)

Theorem 1 has the implication that distributions with the same optimal

strata boundaries must be members of the same family which differ

by at most factors of location and/or scale. While the direct

implication of this condition appears obvious the converse, although

intuitive, is somewhat less transparent.

It is also reasonable to ask under what conditions the optimal

spacings for one distribution can be obtained in terms of the optimal

strata boundaries for another in the sense that, if (x I is a set

of optimal boundaries for F2, an optimal spacing for F1 is provided by

uil F 2(xi2 ;62) , i=O,...,k+l . (6)

Such conditions are provided by the following theorem.

Theorem 3. Let g, denote either d or dl'QI , depending on whether 01

is a location or scale parameter, and assume that g, and Q2 satisfy

the hypotheses of Theorem 1 and 2 respectively. Then Problem 1 for FI

is equivalent to Problem 2 for F2 (in the sense of (6)) for all k

if and only if there exists constants a,B (B#0) such that

g1(u) - a + a Q2 (u) , u E (0,i). (7)

As an illustration, note that it follows from (7) that optimal spacing

selection for location parameter estimation for the logistic is equivalent

to the problem of optimal stratification for the estimation of the mean of

a uniform distribution on any finite interval (a,b].
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3. Proofs. In this section Theorems 1-3 will be proven. The proofs

are accomplished by a series of three lemmas.

Lemma 1. Let d and Q denote the standardized d.q.f. and q.f. for a distri-

bution which depends on either a location or scale parameter, 0. Define g

as d, for 8 a location parameter, or d.Q, for 8 a scale parameter, and

assume that g vanishes at 0 and 1 and is absolutely continuous with square

integrable derivative g'. Then, the problem of optimal spacing selection

for the ABLUE of 8 is equivalent to the selection of a best set of break-

points for L2 [0,1] approximation of g' by piecewise constants.

Proof. See Eubank, Smith and Smith (1981).

Lemma 2. Let Q denote the standardized q.f. for an absolutely continuous

d.f. F(x;8) wher_e 8 is either a location or scale parameter. Assume

that F has a finite second moment and mean proportional to 8 and that Q is

continuous and strictly monotone on (0,1). Then, Problem 2 for F is equi-

valent to selecting optimal breakpoints for L2[0,l] approximation of Q by

piecewise constants.

Proof. First observe that, since F has a finite second moment, Q eL2[0,1].

For the case of e a location parameter, F may be expressed as H(x-8), where

H is the distribution function corresponding to Q. Now, for any set of

strata boundaries a -x 0 < x1 <..-, xk+ 1 b it has been shown by Dalenius (1950)

that the variance of e is

v(e) - - 1 k+l [2(xie)_H(xi _1 0 10 (8)

.WN
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where

2
[H(x -e)_H(x -le)IC 2_ x2 dH(x-e) _ [u(x _6)lH(xi l- xdH(x-O) (9)

xi-i

Making the change of variable x-e = Q(u) in (9), letting ui = H(xi-6)

and simplifying gives

2
2 Q (~u) 2 d Cu

(ui-uil)a i  ul du - (ui ui) Q(u)I (u u (u)du

where is the indicator function for (uilUi. nV(6)

is now recognized as the squared L2 [O,1] error for the approximation of

Q by piecewise constants with breakpoints at 0-u < u << U.. <.-I0 1 k+l
Observing that the ui and xi are uniquely defined by e +Q(ui) =xi it follows

that minimization of (8) with respect to the u.'s or the xi's are equivalent

problems. The case of scale parameter estimation is proven similarly.

As a result of Lemmas I and 2 questions concerning the equivalence

of Problems 1 and 2 can now be viewed as questions regarding the equivalence

4 of breakpoint selection problems for L2 [0,1 ] approximation by piecewise

constants. This subject is treated by the next lemma.

Lemma 3. Let m1 and m2 be square integrable functions and assume that,

for i-l,2, m' is continuous, monotone and of one sign on (0,1) with

ImjI2/3 integrabl. menm and m2 will have the same optimal brealkpoints

for L2 [0,1] approximation by piecewise constants for all k if and only

if there exists constants a,8 (0#0) such that

ml(u) a + m2 (u) ' u E (0,1). (10)

,*1
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Proof. The sufficiency of (10) follows immediately upon noting that,

in this event, the L2 [0,1] errors for approximation of m. and m2 are

proportional with proportionality factor 101. To establish its necessity

let {Uk I be a sequence of sets of optimal breakpoints for mI wherek
k k k k

Uk uo ... ,u 1l and 0-u0 <.--< Uk+l 1. By hypothesis each Uk is

also optimal for m2 . Now, as in Barrow and Smith (1978), define piece-

wise linear functions sk with sk(U) i/k+l, i=O,...,k+l. Then, using

Theorem 1.1 of Burchard and Hale (1975) in conjunction with the proof

of Theorem 3 in Barrow and Smith (1978), it is seen that

T 1lim sk(T) = f JmI(u)12/3du/f Im'(t) 12/3dt. (11)
k- 0 0

However, as the Uk are also optimal for m2, it must be that

k

lim sk(T) = f m'(u)12/3 du/f Imj(t)1 2 / 3dt. (12)
k- 0 0

The lemma now follows by equating (11) and (12) and differentiating.

To prove Theorem 1 take mI Mg', m2  g2 in Lemma 3 and observe that

the convexity or concavity of gi is equivalent to gi being of one sign

on (0,1). Theorems 2 and 3 can be obtained similarly by taking mI 
f QI,

m2'Q2 and mlg1, m2 =Q 2
"

Remark. Lemmas 1 and 2 have the consequence that problems of optimal

spacing and stratification, when viewed in the quantile domain, have

simple geometric interpretations as piecewise constant approximation

problems. Relationships between the solutions to these problems for

different distributions can, therefore, often be detected by merely

graphing the appropriate functions.
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.* 4. Extension to Optimal Grouping. The results of Section 2 can be

extended to include the following optimal grouping problem considered by

Kulldorff (1961).

Problem 3. Choose group boundaries, a =x < x <'''< X b, that minimize

the asymptotic variance of the maximum likelihood estimatcr of a location

or scale parameter, 8, obtained using only the group boundaries and the

proportion of sample elements within each group.

Theorems 1 and 3 can also be shown to apply to Problem 3 through the

use of Theorem 4 of Adatia and Chan (1981). Their result states that

for a given distribution Problems 1 and 3 are always equivalent (in the

sense of (6)), provided the distribution satisfies certain regularity

conditions specified by Kulldorff (1961, pg. 20). Using this fact and

restricting attention to the special case of F = F2 =F, 61=82 = 8,

dI =d 2 =d and QI 
= Q2 

= Q, a quantile domain version .of Theorem 5 of Adatia

and Chan (1981) follows from Theorem 3.

Corollary. Let g represent either d or d'Q, depending on whether 6 is

a location or scale parameter, and assume that g and Q satisfy the hypo-

theses of Theorem 1 and 2 respectively. Then Problems 1-3 are equivalent

for all k if and only if there exists constants a,8 (#0) such that

g'(u) - a + 0 Q(u) , u (0,1). (13)

In comparing the Corollary with the results of Adatia and Chan

observe that our approach dispenses with conditions requiring the existence

of a sequence of strata boundaries, fBk, for which the corresponding

estimators satisfy limk_, V(ek) -0. We note that it follows immediately

from (13) that Problems 1-3 are equivalent for either a normal or gamma

distribution.
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